How (Not) to Use OAuth

Dr. Daniel Fett
@dfett42

REPLY

Partners | Ma

BlackDirect: Microsoft Azure Account Takeover

Blackbirect

December 02, 2019 | | Omer Tsarfati |

Over the last few weeks, my team and | have been working on research
associated with Microsoft Azure and Microsoft OAuth 2.0. Over the course of
that time, we found a vulnerability that allows for the takeover of Microsoft

Azure Acconnt Affecting cnorific Microcenft'ce OANth 2 0 annlicatinne thic

Company

Who is familiar with O@th?

OAuth 2.0 in the Wild

Wheide dhoh . wem dein Facenoos-Koma e TripAdvisss v verwenden

EManAdrease

Passwart

e Lot THIDAYIS0S arejertosiiet Lis e

ign-in-with-

Log-in

Banking

B AW cos //app Leid . app Le. con/auth/ token gl
‘grant_type' => 'authorization_code',
‘code' => $_GET['code'],
"redirect_uri' => Sredirect_uri,
‘client_id' == $client_id,
‘client_secret’ => Sclient_secret,
1:

ifiliccatifracnanca. sarracs tokanil T

Apple

Google OAuth 2.0 Playground
wants to access your Google
Account

[———
This will allow Google OAuth 2.0 Playground to:

Bl View and edit events on all your calendars (0]

Make sure you trust Google OAuth 2.0
Playground

Google Ao

Leam about the risks

Cancol

OAuth is a standard
for federated authorization

Authorization

‘ I authorizes

User
Authentication

i I authenticates to

User

to access

‘ Google
Photos
r account

Authorization Server
& Resource Server

Photo
Editor

Client

@ using identity from

airbnb
Relying Party

O

|dentity Provider

| dare you. | double dare you.

Authorization

Photo ’ Google
authorizes . to access Photos
ﬂ Editor v account

User Client Authorization Server
& Resource Server

Check: Redirect URI

Authorlzatlon Code Grant

ﬂ User

Phot
Edltor

Client

Google
Photos

AS/RS

3

Give access

User authenticates; authorizes access

Editor?

POST /token, code=foo42

Send access_token

Use access_token

Authorlzatlon Code Grant

ﬂ User POST /connect

Redirect to Authorization Server

Photo
Editor Google
Photos
AS/RS

Client

GET /authorize?redirect_uri=client.example/authok&state=... (';
User authenticates; authorizes access e .
Redirect to client.example/authok?code=foo428&state-=... t‘é;&?t?o

GET ...2code=foo42&state=...
POST /token, code=foo42

Send access_token

Check: state parameter equal

Use access_token

Authorlzatlon Code Grant

ﬂ User POST /connect

Redirect to Authorization Server

Photo
Editor Google
Photos
AS/RS

Client

GET /authorize?redirect_uri=client.example/authok&state=... ('L
User authenticates; authorizes access e .
Redirect to client.example/authok?code=foo428&state-=... t‘é;&?tqo

GET ...2code=foo42&state=...

POST /token, code=foo42

Send access_token

Optional check: Client authentication

at the Token Endpoint

ImpI|C|t Grant — the S|mpler OAuth”?

n Google
't Photos
User POST /connect

Client AS/RS
Redirect to Authorization Server
GET /authorize?redirect_uri=client.example/authok&state=... (';
User authenticates; authorizes access e .
Redirect to client.example/authok#access_token=bar42&state-=... t‘é;{‘;f?o

Use access_token (Single-Page Apps)

or<—"

Send access_token (Non-SPA)

Use access _token

Seven Years after RFC6749:
Security Challenges for OAuth

Challenge 1: Implementation Flaws

e We still see many implementation flaws

Challenge 1: Implementation Flaws

e \We still see many implementation flaws

e Known anti-patterns are still used
o Insufficient redirect URI checking (code/token is redirected to attacker) Black irect

o state parameter is not used properly to defend against CSRF
O

e [Lietal., 2014] e [Chenetal., 2014]
60 chinese clients, more than half vulnerable to 89 of 149 mobile clients vulnerable to one or
CSRF more attacks

e [Yang et al., 2016] e [Wangetal., 2013]
Out of 405 clients, 55% do not handle state Vulnerabilities in Facebook PHP SDK and other
(CSRF protection) correctly OAuth SDKs

e [Shebab et al., 2015] e [Sunetal., 2012]
25% of OAuth clients in Alexa Top 10000 96 Clients, almost all vulnerable to one or more

vulnerable to CSRF attacks

Challenge 1: Implementation Flaws

e \We still see many implementation flaws

e Known anti-patterns are still used
o Insufficient redirect URI checking (code/token is redirected to attacker)
o state parameter is not used properly to defend against CSRF

e Technological changes bring new problems

o E.g., URI fragment handling in browsers changed
— Vulnerability when used with open redirectors

Challenge 2: High-Stakes Environments

New Use Cases, e.g., Open Banking, require a very high level of security

OPEN BANKING OpenlD ' stet THE Berlin GROUP .
Financial Grade API
OpenlD W mobile C% Sy yes®
iGov Profile connect CONSORTIUM

Also: eIDAS/QES (legally binding electronic signatures)

Far beyond the scope of the original security threat model!

Challenge 3: Dynamic and Complex Setups

Originally anticipated:

One trustworthy OAuth provider,
statically configured per client

Authorization Server

Resource Server

OAuth Provider

Challenge 3: Dynamic and Complex Setups

Today:

- R

Resource Server r

OAuth Provider A

\ J

Authorization Server N /

Multiple AS/RS per client

N\
Dynamic relationships \

Ve

Authorization Server

— Resource Server

OAuth Provider B

.

.

Resource Server+ ¢<

OAuth Provider C

Authorization Servrr“_

Not all entities
| are trustworthy!

How to address these
challenges?

OAuth 2.0 Security Best Current Practice RFC

e Under development at the IETF
e Refined and enhanced security guidance for OAuth 2.0 implementers

e Complements existing security guidance in RFCs 6749, 6750, and 6819

e Updated, more comprehensive Threat Model

e Description of Attacks and Mitigations
e Simple and actionable recommendations

T e it it b o i B 9 s B 0

e Input from practice and formal analysis
POX T N

mmmmmmmmmm

- . p—
e P v et s et o P Bt 850
1 ET F

The Five Most Important

Recommendations
In the OAuth Security BCP

(D Do not use the OAuth Implicit Grant any longer!

ﬂ User ‘ Client ‘AS/RS

Threat: Access token Authorization Server

leakage from web

application (XSS, browser GET /authorize?...
history, proxies, operating

systems, ...) User authenticates & consents Threat: Access token replay!

Redirect to rp.com/authok#access_token=f0023%&...

* Access token available in web application

Use access_token (Single-Page Apps)

Send access_token (Non-SPA) Threat: Access token injection!

Use access_token

The Implicit Grant ...

e sends powerful and potentially long-lived tokens through the browser,
e lacks features for sender-constraining access tokens,

e provides no protection against access token replay and injection, and
e provides no defense in depth against XSS, URL leaks, etc.!

Why is Implicit even in RFC6749?

No Cross-Origin Resource Sharing in 2012!
= No way of (easily) using OAuth in SPAs. Recommendation

= Not needed in 2019! “Clients SHOULD NOT use the implicit grant [...]"

“Clients SHOULD instead use the response type code
(aka authorization code grant type) [...]"

Use the Authorization Code Grant!

Mitigation: Proof Key for Code Exchange (PKCE)
User - Code only useful with code_verifier

- Code replay/injection prevented by PKCE.

Redirect to Authorization

GET /authorize?code_challenge=sha256xyz&...

Redirect to rp.com/authok?code=bar42&...

Send code

POST /token, code=bar42

a ale —

Mitigation: Single-use Code

Double use leads to access token invalidation!

Send access_token
Mitigation: Sender-Constrained Token
E.g., access token bound to mTLS certificate. Use access_token

Authorization Code Grant with PKCE & mTLS ...

e protects against code and token replay and injection,
e supports sender-constraining of access tokens,
e provides defense in depth!

Recommendation

“Clients utilizing the authorization grant type MUST use PKCE [...]"

“Authorization servers SHOULD use TLS-based methods for sender-constrained access tokens [...]”

(2 Stop Redirects Gone Wild!

e Enforce exact redirect URI matching
o Simpler to implement on AS side
o Adds protection layer against open redirection

e Clients MUST avoid open redirectors!
o Use whitelisting of target URLs
o or authenticate redirection request

3 Prevent CSRF Attacks!

e (CSRF attacks MUST be prevented
e RFC 6749 and RFC 6819 recommend use of state parameter

e Updated advice:
o If PKCE is used, state is not needed for CSRF protection
o state can again be used for application state

(4) Limit Privileges of Access Tokens!

e Sender-constraining (mTLS, HTTP Token Binding, or DPoP)
e Receiver-constraining (only valid for certain RS)
e Reduce scope and lifetime and use refresh tokens - defense in depth!

(® Do not use the R.O.P.C.G.* any longer!

*Resource Owner Password Credentials Grant

ﬂ User ‘ Client ‘AS/RS

Username/Password for AS

Username/Password for AS
Send access_token

Use access_token

e C(Client sees username/password of user
e Complicated or impossible to integrate 2-factor-authentication
e Stopgap solution for migrating to OAuth flows

What else?

e Prevent Mix-Up attacks!
Protect Refresh Tokens!

Do not use HTTP status code 307 for redirections
o User credentials may be leaked to an attacker

e Aim to prevent code leakage from referrer headers and browser history
o E.g., referrer policies, browser history manipulations, etc.
o Already common practice among implementers
o Only one of many lines of defense now

e Use client authentication if possible
o Client authenticates at the token endpoint
o More protection for authorization code

Should | even use OAuth?

Absolutely!

e Standards are good
o Libraries (save time & money; battle-proven code)
o Interoperability

Years of experience, dozens of security analyses

Custom-built solutions prone to repeat even the most simple vulnerabilities
Protection against strong attackers

Formal proof of security

But:

Read the security advice, including the BCP draft
Implement the latest security features

Don’t roll your own ceypto OAuth!

Know your threat model

© O O O

Formal Analysis

e Analysis based on formal models of systems

e “Offline testing of application logic”
o Before writing a single line of code
o Finds regressions caused by technological changes

e Successfully used for cryptographic protocols
o Recently used for TLS 1.3
o Helps to write precise specifications
o Provides security guarantees - within limits

e Not common for web applications/standards yet
e — Proof for OAuth 2.0

Dr. Daniel Fett
Security Specialist at yes.com

mail@danielfett.de
@dfett42

Links, latest BCP draft, papers, etc.:
https://danielfett.de

Security Barcamp
Cologne, Apr. 4-5
https://sec.camp

OAuth Security Workshop
Trondheim, July 22-24
https://0sw2020.com

Research Papers

[Fett et al., 2014] Daniel Fett, Ralf Kisters, and Guido Schmitz. “
An Expressive Model for the Web Infrastructure: Definition and Application to the BrowserID SSO System”.

[Fett et al., 2016] Daniel Fett, Ralf Kisters, and Guido Schmitz. “A Comprehensive Formal Security Analysis of OAuth 2.0”.
[Li et al., 2014] Wanpeng Li and Chris J. Mitchell. “Security issues in OAuth 2.0 SSO implementations”.
[Yang et al., 2016] Ronghai Yang et al. “Model-based Security Testing: An Empirical Study on OAuth 2.0 Implementations”.

[Shebab et al., 2015] Mohamed Shehab and Fadi Mohsen. “Towards Enhancing the Security of OAuth Implementations in Smart
Phones”.

[Chen et al., 2014] Eric Y. Chen et al. “OAuth Demystified for Mobile Application Developers”.

[Wang et al., 2013] Rui Wang et al. “Explicating SDKs: Uncovering Assumptions Underlying Secure Authentication and Authorization”.

[Sun et al., 2012] San-Tsai Sun and Konstantin Beznosov. “The Devil is in the (Implementation) Details: An Empirical Analysis of
OAuth SSO Systems”.

https://arxiv.org/abs/1403.1866
https://arxiv.org/abs/1601.01229

	Folie 1
	Folie 2
	Folie 3
	OAuth 2.0 in the Wild
	OAuth is a standard for federated authorization
	Authentication
	Folie 7
	Authentication OAuth + OpenID Connect
	Authorization Code Grant
	Authorization Code Grant
	Authorization Code Grant
	Implicit Grant — the “simpler OAuth”?
	Seven Years after RFC6749: Security Challenges for OAuth
	Challenge 1: Implementation Flaws
	Challenge 1: Implementation Flaws
	Challenge 1: Implementation Flaws
	Challenge 2: High-Stakes Environments
	Challenge 3: Dynamic and Complex Setups
	Challenge 3: Dynamic and Complex Setups
	How to address these challenges?
	OAuth 2.0 Security Best Current Practice RFC
	Folie 22
	① Do not use the OAuth Implicit Grant any longer!
	The Implicit Grant ...
	Use the Authorization Code Grant!
	Authorization Code Grant with PKCE & mTLS …
	② Stop Redirects Gone Wild!
	③ Prevent CSRF Attacks!
	④ Limit Privileges of Access Tokens!
	⑤ Do not use the R.O.P.C.G.* any longer!
	What else?
	Should I even use OAuth?
	Absolutely!
	Formal Analysis
	Q&A!
	Research Papers

