
How (Not) to Use OAuth
Dr. Daniel Fett

@dfett42

yes®

Secure
Cologne
Talks

Who is familiar with OAuth?
OAuth 2.0

OAuth 2.0 in the Wild

Banking

Apple

Facebook

Google

and friends

OAuth is a standard
for federated authorization

Authorization

Authorization Server
& Resource Server

User Client

Photo
Editor

Google
Photos
account

authorizes to access

Authentication

Relying PartyUser

authenticates to using identity from

Identity Provider

Authorization OAuth (RFC6749+RFC6750)

Authorization Server
& Resource Server

User Client

Photo
Editor

Google
Photos
account

authorizes to access

Authentication OAuth + OpenID Connect

Relying PartyUser

authenticates to using identity from

Identity Provider

AS/RSUser

Authorization Code Grant

GET /authorize?redirect_uri=client.example/authok&state=…

Redirect to Authorization Server

User authenticates; authorizes access

Redirect to client.example/authok?code=foo42&state=…

POST /token, code=foo42

Use access_token

GET …?code=foo42&state=…

Client

Send access_token

POST /connect

Photo
Editor

Give access
to Photo
Editor?

Google
Photos

Check: Redirect URI

AS/RSUser

Authorization Code Grant

GET /authorize?redirect_uri=client.example/authok&state=…

Redirect to Authorization Server

User authenticates; authorizes access

Redirect to client.example/authok?code=foo42&state=…

POST /token, code=foo42

Use access_token

GET …?code=foo42&state=…

Client

Send access_token

POST /connect

Photo
Editor

Give access
to Photo
Editor?

Google
Photos

Check: state parameter equal

AS/RSUser

Authorization Code Grant

GET /authorize?redirect_uri=client.example/authok&state=…

Redirect to Authorization Server

User authenticates; authorizes access

Redirect to client.example/authok?code=foo42&state=…

POST /token, code=foo42

Use access_token

GET …?code=foo42&state=…

Client

Send access_token

POST /connect

Photo
Editor

Give access
to Photo
Editor?

Google
Photos

Optional check: Client authentication
at the Token Endpoint

AS/RSUser

Implicit Grant — the “simpler OAuth”?

GET /authorize?redirect_uri=client.example/authok&state=…

Redirect to Authorization Server

User authenticates; authorizes access

Redirect to client.example/authok#access_token=bar42&state=…

Use access_token (Single-Page Apps)

Send access_token (Non-SPA)

Use access_token

Client

Give access
to Photo
Editor?

Google
Photos

POST /connect

or

Seven Years after RFC6749:

Security Challenges for OAuth

Challenge 1: Implementation Flaws
● We still see many implementation flaws

Challenge 1: Implementation Flaws
● We still see many implementation flaws
● Known anti-patterns are still used

○ Insufficient redirect URI checking (code/token is redirected to attacker)
○ state parameter is not used properly to defend against CSRF
○ …

● [Li et al., 2014]
60 chinese clients, more than half vulnerable to
CSRF

● [Yang et al., 2016]
Out of 405 clients, 55% do not handle state
(CSRF protection) correctly

● [Shebab et al., 2015]
25% of OAuth clients in Alexa Top 10000
vulnerable to CSRF

● [Chen et al., 2014]
89 of 149 mobile clients vulnerable to one or
more attacks

● [Wang et al., 2013]
Vulnerabilities in Facebook PHP SDK and other
OAuth SDKs

● [Sun et al., 2012]
96 Clients, almost all vulnerable to one or more
attacks

Challenge 1: Implementation Flaws
● We still see many implementation flaws
● Known anti-patterns are still used

○ Insufficient redirect URI checking (code/token is redirected to attacker)
○ state parameter is not used properly to defend against CSRF
○ …

● Technological changes bring new problems
○ E.g., URI fragment handling in browsers changed

 → Vulnerability when used with open redirectors

Open Redirector: Parameterized, unchecked redirection. E.g.:

https://client.example/anything?resume_at=https://evil.example

Redirects to https://evil.example

Challenge 1: Implementation Flaws
● We still see many implementation flaws
● Known anti-patterns are still used

○ Insufficient redirect URI checking (code/token is redirected to attacker)
○ state parameter is not used properly to defend against CSRF
○ …

● Technological changes bring new problems
○ E.g., URI fragment handling in browsers changed

 → Vulnerability when used with open redirectors

Challenge 2: High-Stakes Environments
New Use Cases, e.g., Open Banking, require a very high level of security

Also: eIDAS/QES (legally binding electronic signatures)

Far beyond the scope of the original security threat model!

iGov Profile HEART WG

Financial Grade API

Challenge 3: Dynamic and Complex Setups
Originally anticipated:

One trustworthy OAuth provider,
statically configured per client

Client

Resource ServerResource Server Authorization ServerResource Server

OAuth Provider

OAuth Provider B

Challenge 3: Dynamic and Complex Setups

Client
Resource ServerResource Server

Authorization Server

Resource Server

Resource Server

OAuth Provider C

Resource Server Authorization ServerResource Server

OAuth Provider A

Resource ServerResource Server

Authorization Server

Resource Server

Dynamic relationships

Multiple AS/RS per client
Today:

Not all entities
are trustworthy!

AS M
ix-

Up A
tta

ck
!

How to address these
challenges?

OAuth 2.0 Security Best Current Practice RFC
● Under development at the IETF
● Refined and enhanced security guidance for OAuth 2.0 implementers
● Complements existing security guidance in RFCs 6749, 6750, and 6819

● Updated, more comprehensive Threat Model
● Description of Attacks and Mitigations
● Simple and actionable recommendations

Input from practice and formal analysis

The Seven Most Important

Recommendations
in the OAuth Security BCP

User

① Do not use the OAuth Implicit Grant any longer!

GET /authorize?…

Redirect to Authorization Server

AS/RS

User authenticates & consents

Redirect to rp.com/authok#access_token=foo23&…

Use access_token (Single-Page Apps)

Access token available in web application

Send access_token (Non-SPA)

Use access_token

Threat: Access token
leakage from web
application (XSS, browser
history, proxies, operating
systems, ...) Threat: Access token replay!

Threat: Access token injection!

Client

The Implicit Grant ...
● sends powerful and potentially long-lived tokens through the browser,
● lacks features for sender-constraining access tokens,
● provides no protection against access token replay and injection, and
● provides no defense in depth against XSS, URL leaks, etc.!

Why is Implicit even in RFC6749?

No Cross-Origin Resource Sharing in 2012!
⇒ No way of (easily) using OAuth in SPAs.

⇒ Not needed in 2019!

Recommendation

“Clients SHOULD NOT use the implicit grant [...]”

“Clients SHOULD instead use the response type code
(aka authorization code grant type) [...]”

AS/RSUser

Use the Authorization Code Grant!

GET /authorize?code_challenge=sha256xyz&...

Redirect to Authorization Server

...

Redirect to rp.com/authok?code=bar42&...

POST /token, code=bar42
 &code_verifier=xyz...

Use access_token

Send code

Send access_token
Mitigation: Sender-Constrained Token
E.g., access token bound to mTLS certificate.

Mitigation: Single-use Code
Double use leads to access token invalidation!

Client

Mitigation: Proof Key for Code Exchange (PKCE)
- Code only useful with code_verifier
- Code replay/injection prevented by PKCE.

Authorization Code Grant with PKCE & mTLS …
● protects against code and token replay and injection,
● supports sender-constraining of access tokens,
● provides defense in depth!

Recommendation

“Clients utilizing the authorization grant type MUST use PKCE [...]”

“Authorization servers SHOULD use TLS-based methods for sender-constrained access tokens [...]”

"Login with Facebook"

OK, Authenticate at Attacker

Attacker

Facebook

user authentication

Redirect to rp.com with Access Token in URI fragment

5. send access token

6. use AT ! 6. retrieve data using AT

Attacker replaces redirection to his IdP by
redirection to original IdP (Facebook).

② Prevent Mix-Up Attacks!
Attacker replaces the

choice of the user.

User FacebookClient

Client thinks:
"User will

log in using
Attacker as

IdP"

② Prevent Mix-Up Attacks!
● Clients MUST be able to see originator of authorization response

○ Clients SHOULD use a separate redirect URI for each AS

○ Alternative: issuer in authorization response for OpenID Connect

● Clients MUST keep track of desired AS (“explicit tracking”)

③ Stop Redirects Gone Wild!
● Enforce exact redirect URI matching

○ Simpler to implement on AS side
○ Adds protection layer against open redirection

● Clients MUST avoid open redirectors!
○ Use whitelisting of target URLs
○ or authenticate redirection request

④ Prevent CSRF Attacks!
● CSRF attacks MUST be prevented
● RFC 6749 and RFC 6819 recommend use of state parameter
● Updated advice:

○ If PKCE is used, state is not needed for CSRF protection
○ state can again be used for application state

⑤ Limit Privileges of Access Tokens!
● Sender-constraining (mTLS, HTTP Token Binding, or DPoP)
● Receiver-constraining (only valid for certain RS)
● Reduce scope and lifetime and use refresh tokens - defense in depth!

AS/RSUser

Refresh Tokens

...

POST /token, code=...

Use access_token¹

Send code

access_token¹ refresh_token¹
Access Token: Narrow scope and limited lifetime!

Access Token expires.

POST /token, refresh_token¹

access_token² refresh_token²

Use access_token²

Client

⑥ Protect Refresh Tokens!
● Attractive target since refresh tokens represent overall grant
● Requirement: Protection from theft and replay

○ Client Binding and Authentication
■ Confidential clients only

○ Sender-Constrained Refresh Tokens
■ mTLS and DPoP now support this even for public clients

⑦ Do not use the R.O.P.C.G.* any longer!
*Resource Owner Password Credentials Grant

AS/RSUser

Username/Password for AS

Username/Password for AS

Use access_token

Send access_token

● Client sees username/password of user
● Complicated or impossible to integrate 2-factor-authentication
● Stopgap solution for migrating to OAuth flows
● Grant name too long, even for Germans ;-)

Client

What else?
● Do not use HTTP status code 307 for redirections

○ User credentials may be leaked to an attacker

● Aim to prevent code leakage from referrer headers and browser history
○ E.g., referrer policies, browser history manipulations, etc.
○ Already common practice among implementers
○ Only one of many lines of defense now

● Use client authentication if possible
○ Client authenticates at the token endpoint
○ More protection for authorization code

Should I even
use OAuth?

Absolutely!
● Standards are good

○ Battle-proven libraries
○ Interoperability

● Years of experience, dozens of security analyses
● Custom-built solutions prone to repeat even the most simple vulnerabilities
● Protection against strong attackers
● Formal proof of security
● But:

○ Read the security advice, including the BCP draft
○ Implement the latest security features
○ Know your threat model

Q&A!

Latest Draft, papers, etc.: https://danielfett.de → Publications

Dr. Daniel Fett
yes.com
danielf@yes.com
@dfett42

yes®

