How (Not) to Use OAuth

Dr. Daniel Fett

@dfett42

Secure
Cologne
Talks yes

Who is familiar with O@th?

OAuth 2.0 in the Wild

and friends

Qv ~fr

& https:/www.facebook.com

Facebook - Google Chrome

3 Facebook

Melde dich an, um dein Facebook-Konto mit TripAdvisor zu verwenden.

E-Mail-Adresse
oder
Handynummer.
Passwort
Immer bei TripAdvisor angemeldet bleiben

Konto vergessen?

Neues Konto erstellen

Facebook

Qv ~92
sign-in-with-apple-example/i X +

< (¢]

sign-in-with-apple-example/index.php at master - aaronpk/sign-in-with-apple-example - GitHub - Google Chrome

& GitHub, Inc. [US] | https:/github.com

DSOS G308 ctos://app Leid. app e .con/auth/ tokengil
'grant_type' 'authorization_code',
> $_GET['code'],
'redirect_uri' => $redirect_uri,
‘client_id' => $client_id,
'client_secret' => $client_secret,
1);

'code’

ifl(liceat(®racnnnca-sarrace taken)) [

Qv 92
@ INGLogin

[¢]

Log-in

& ING-DiBa AG [DE]

Banking

Inkognito (2) @)

Apple

+

https:

access.ing.de.

ING Login - Google Chrome

Qv 9
@ sign in- Google Accounts i

< c

Sign in - Google Accounts - Google Chrome

G Sign inwith Google

Google OAuth 2.0 Playground
wants to access your Google
Account

@ rettaeniciegoogiemaiicom
This will allow Google OAuth 2.0 Playground to:

View and edit events on all your calendars ®

Make sure you trust Google OAuth 2.0
Playground

You may be sharing sensitive info with this site or app.
Learn about how Google OAuth 2.0 Playground will handle
your data by reviewing ts terms of service and privacy
policies. You can always see or remove access in your
Google Account

Learn about the risks

Cancel

English (United States) ~ Help Privacy

& https:/accounts.google.com %

Inkognito €

Inkognito @)

Terms

Google

OAuth is a standard
for federated authorization

Authorization

‘ I authorizes

User
Authentication

i I authenticates to

User

‘ Google
Photos
' account

Authorization Server
& Resource Server

Photo {
Editor 0 access

Client

@ using identity from

airbnb
Relying Party

5,

|dentity Provider

Say OAuthis an Authentication
standard again.

| dare you. | double dare you.

Authorization [N 2= ehr4:0)

Photo ; Prome
: _ Photos
‘l I authorizes Editor to access ' account

User Client Authorization Server
& Resource Server

Check: Redirect URI

Authorization Code Grant

ﬂ User POST /connect

Photo
Editor

; Google
v Photos

Client AS/RS
Redirect to Authorization Server
GET /authorize?redirect_uri=client.example/authok&state=.. D\ ('L
User authenticates; authorizes access Give access
Redirect to client.example/authok?code=foo42&state=.. tE;&ﬂf

GET ..?code=foo042&state=..
POST /token, code=fo0042
Send access_token

Use access_token

Authorization Code Grant

ﬂ User POST /connect

Redirect to Authorization Server

Photo
Editor Google
' Photos
AS/RS

Client

GET /authorize?redirect_uri=client .example/authok&statea. | ('L
User authenticates; authorizes access Give access
Redirect to client.example/authok?code=foo42&state=.. | tcé;:)?go

GET ...?code=foo42&state=...|

POST /token, code=fo0042

Send access_token

Check: state parameter equal

Use access_token

Authorization Code Grant

ﬂ User POST /connect

Redirect to Authorization Server

Photo
Editor Google
' Photos
AS/RS

Client

GET /authorize?redirect_uri=client.example/authok&state=.. ('L
User authenticates; authorizes access Give access
Redirect to client.example/authok?code=foo42&state=.. tcé;:)?go

GET ..?code=foo042&state=..

POST /token, code=fo0042

Send access_token

Optional check: Client authentication

at the Token Endpoint

Implicit Grant — the “simpler OAuth™?

n e Google
Photos
User POST /connect Client AS/RS

Redirect to Authorization Server

GET /authorize?redirect_uri=client.example/authok&state=.. f 'L
User authenticates; authorizes access Give access
Redirect to client .example/authok#access_token=bar42&state=.. tcé;{‘o‘;’;o

Use access_token (Single-Page Apps)

or<<__

Send access_token (Non-SPA)

Use access_token

Seven Years after RFC6749:
Security Challenges for OAuth

Challenge 1: Implementation Flaws

e \We still see many implementation flaws

Challenge 1: Implementation Flaws

e \We still see many implementation flaws

e Known anti-patterns are still used

o Insufficient redirect URI checking (code/token is redirected to attacker)
o state parameter is not used properly to defend against CSRF

(@)

e [Lietal, 2014] e [Chenetal., 2014]
60 chinese clients, more than half vulnerable to 89 of 149 mobile clients vulnerable to one or
CSRF more attacks

e [Yang et al., 2016] e [Wangetal., 2013]
Out of 405 clients, 55% do not handle state Vulnerabilities in Facebook PHP SDK and other
(CSRF protection) correctly OAuth SDKs

e [Shebab et al., 2015] e [Sunetal., 2012]
25% of OAuth clients in Alexa Top 10000 96 Clients, almost all vulnerable to one or more

vulnerable to CSRF attacks

Challenge 1: Implementation Flaws

e \We still see many implementation flaws

e Known anti-patterns are still used
o Insufficient redirect URI checking (code/token is redirected to attacker)

o state parameter is not used properly to defend against CSRF
O

e Technological changes bring new problems
o E.g., URI fragment handling in browsers changed
— Vulnerability when used with open redirectors

Open Redirector: Parameterized, unchecked redirection. E.g.:

https://client.example/anything?resume_at=https://evil.example

Redirects to https://evil.example

Challenge 1: Implementation Flaws

e \We still see many implementation flaws

e Known anti-patterns are still used
o Insufficient redirect URI checking (code/token is redirected to attacker)
o state parameter is not used properly to defend against CSRF
o ..
e Technological changes bring new problems
o E.g., URI fragment handling in browsers changed
— Vulnerability when used with open redirectors

Challenge 2: High-Stakes Environments

New Use Cases, e.g., Open Banking, require a very high level of security

OPEN BANKING Open]D ’S‘l’et THE Berlin GROUP ..
Financial Grade API
OpeniD mobile C% SaNArURE l OpeniD
iGov Profile connect CONSORTIUM HEART WG

Also: eIDAS/QES (legally binding electronic signatures)

Far beyond the scope of the original security threat model!

Challenge 3: Dynamic and Complex Setups

Originally anticipated:

One trustworthy OAuth provider,
statically configured per client

Authorization Server

Resource Server

OAuth Provider

Challenge 3: Dynamic and Complex Setups

Today:

-

-

Authorization Server

Resource Server

OAuth Provider A

L

Multiple AS/RS per client

Dynamic relationships\ \

Authorization Server

— Resource Server

OAuth Provider B

-

\

Resource Server’ ¢<

.-

OAuth Provider C

Authorization Servvr“,

Not all entities
are trustworthy!

How to address these
challenges?

OAuth 2.0 Security Best Current Practice RFC

e Under development at the IETF
e Refined and enhanced security guidance for OAuth 2.0 implementers
e Complements existing security guidance in RFCs 6749, 6750, and 6819

irnemor ot

= | e Updated, more comprehensive Threat Model
P e Description of Attacks and Mitigations
e Simple and actionable recommendations

Input from practice and formal analysis

nnnnnnnnnnnnnn

1 ET F

The Seven Most Important

Recommendations
in the OAuth Security BCP

@ Do not use the OAuth Implicit Grant any longer!

ﬂ User ' Client ‘AS/RS

Threat: Access token
leakage from web

application (XSS, browser GET /authorize?..
history, proxies, operating

systems, ...) User authenticates & consents Threat: Access token replay!

\uthorization Server

< ﬁedirect to rp.com/authok#access_token=f0023%&..

* Access token available in web application

Use access_token (Sing

Threat: Access token injection! '
Send access_token (Non-SPA)

Use access_token

The Implicit Grant ...

Why is Implicit even in RFC67497?

No Cross-Origin Resource Sharing in 2012!
= No way of (easily) using OAuth in SPAs.

= Not needed in 2019!

sends powerful and potentially long-lived tokens through the browser,
lacks features for sender-constraining access tokens,

provides no protection against access token replay and injection, and
provides no defense in depth against XSS, URL leaks, etc.!

Recommendation

“Clients SHOULD NOT use the implicit grant [...]"

“Clients SHOULD instead use the response type code
(aka authorization code grant type) [...]"

Use the Authorization Code Grant!

Mitigation: Proof Key for Code Exchange (PKCE)
- Code only useful with code_verifier
User

- Code replay/injection prevented by PKCE. S

Redirect to Authorization Server

GET /authorize?code_challenge=sha256xyz&. ..

Redirect to rp.com/authok?code=bar42&. ..

Send code

Mitigation: Single-use Code POST /token,

code=bar42
Double use leads to access token invalidation! etele ==

' Send access_token
Mitigation: Sender-Constrained Token

E.g., access token bound to mTLS certificate. Use access_token

Authorization Code Grant with PKCE & mTLS ...

e protects against code and token replay and injection,
e supports sender-constraining of access tokens,
e provides defense in depth!

Recommendation

“Clients utilizing the authorization grant type MUST use PKCE [...]"

“Authorization servers SHOULD use TLS-based methods for sender-constrained access tokens [...]”

@ Prevent M'X'Up AttaCkS' Client thinks:

"User will
log in using
Attacker as

[dP"
Facebook

Attacker replac 2s redirection to his iIdP by
redirection t, original IdP (Facebook).

Attacker replaces the
choice of the user.

user authentication

Redirect to rp.com with Access Token in

5. send access token

Rl fragment

' 6. use AT

@ Prevent Mix-Up Attacks!

e Clients MUST be able to see originator of authorization response
O Clients SHOULD use a separate redirect URI for each AS

O Alternative: issuer in authorization response for OpenlD Connect

e Clients MUST keep track of desired AS (“explicit tracking”)

3 Stop Redirects Gone Wild!

e Enforce exact redirect URI matching

o Simpler to implement on AS side

o Adds protection layer against open redirection
e Clients MUST avoid open redirectors!

o Use whitelisting of target URLs
o or authenticate redirection request

@ Prevent CSRF Attacks!

e (CSRF attacks MUST be prevented
e RFC 6749 and RFC 6819 recommend use of state parameter

e Updated advice:

o If PKCE is used, state is not needed for CSRF protection
o state can again be used for application state

® Limit Privileges of Access Tokens!

e Sender-constraining (mTLS, HTTP Token Binding, or DPoP)
e Receiver-constraining (only valid for certain RS)
e Reduce scope and lifetime and use refresh tokens - defense in depth!

Refresh Tokens

ﬂ User ' Client ‘AS/RS

Send code

POST /token, code=...

. e access_token' refresh_token’
Access Token: Narrow scope and limited lifetime!

. Use access_token’
Access Token expires.

POST /token, refresh_token?
access_token? refresh_token?2

Use access_token?2

® Protect Refresh Tokens!

e Attractive target since refresh tokens represent overall grant

e Requirement: Protection from theft and replay
o Client Binding and Authentication
m Confidential clients only
o Sender-Constrained Refresh Tokens
m mTLS and DPoP now support this even for public clients

@ Do not use the R.O.P.C.G.* any longer!

*Resource Owner Password Credentials Grant

ﬂ User ' Client 'AS/RS

Username/Password for A-
Username/Password for A-

Send access_token
Use access_token

Client sees username/password of user

Complicated or impossible to integrate 2-factor-authentication
Stopgap solution for migrating to OAuth flows

Grant name too long, even for Germans ;-)

What else?

e Do not use HTTP status code 307 for redirections
o User credentials may be leaked to an attacker

e Aim to prevent code leakage from referrer headers and browser history

o E.qg., referrer policies, browser history manipulations, etc.
o Already common practice among implementers
o Only one of many lines of defense now

e Use client authentication if possible

o Client authenticates at the token endpoint
o More protection for authorization code

Should | even
use OAuth?

Absolutely!

e Standards are good
o Battle-proven libraries
o Interoperability

Years of experience, dozens of security analyses

Custom-built solutions prone to repeat even the most simple vulnerabilities
Protection against strong attackers

Formal proof of security

But:

o Read the security advice, including the BCP draft
o Implement the latest security features
o Know your threat model

Dr. Daniel Fett
yes.com

danielf@yes.com
@dfettd2

Q&A!

Latest Draft, papers, etc.: https://danielfett.de — Publications yeS

