
The Evolving Threat 
Landscape of OAuth

Securing the Backbone
of Modern Authn/Authz

Daniel Fett



About me: Dr. Daniel Fett

● PhD on web protocol security (formal security analysis)

● Contributor to open web standards (IETF OAuth, OpenID Foundation)
○ Best Current Practice for OAuth Security (RFC9700)

○ DPoP (RFC9449)

○ OpenID FAPI

○ OpenID for Verifiable Credentials

○ SD-JWT

● Product owner in the German EUDI Wallet project @ SPRIN-D



In this Talk

What is OAuth 2.0? Quick recap!

Security Challenges for “classic” OAuth & how to address them

The future of identity ecosystems and new threats



Who is familiar with OAuth?
OAuth 2.0



OAuth is a standard
for federated authorization



Authorization 

Authorization Server
& Resource Server

User Client

Banking
App

Online
Banking
Account

authorizes to access

Authentication 

Relying PartyUser

authenticates to using identity from

Identity Provider



Authorization (OAuth) 

Authorization Server
& Resource Server

User Client

Banking
App

Online
Banking
Account

authorizes to access

Authentication (OpenID Connect)

Relying PartyUser

authenticates to using identity from

Identity Provider



OAuth & friends in the Wild

Banking

Apple

Facebook

Google



OAuth 2.0!

e-health
open banking

open insurance

open consumer data

digital identity ecosystems

e-signing

e-governmentopen finance



OAuth from 10.000 feet



AS/RSUser

Implicit Grant

GET /authorize?redirect_uri=client.example/return&…

Redirect to Authorization Server

User authenticates; authorizes access

Redirect to client.example/return#access_token=bar42&… 

Client

Give access 
to bank 

account?

Bank

POST /connect

Authorization
Request

Authorization
Response

Banking
App

Holy Grail



AS/RSUser

Implicit Grant

GET /authorize?redirect_uri=client.example/return&…

Redirect to Authorization Server

User authenticates; authorizes access

Redirect to client.example/return#access_token=bar42&… 

Use access_token (JS Browser Apps)

Send access_token

Use access_token

Client

Give access 
to bank 

account?

Bank

POST /connect

or

Authorization
Request

Authorization
Response

Banking
App



User

Authorization Code Grant

GET /authorize?redirect_uri=client.example/return&…

Redirect to Authorization Server

User authenticates; authorizes access

Redirect to client.example/return?code=foo42&… 

POST /token, code=foo42

Use access_token

GET …?code=foo42&…

Client

Send access_token

POST /connect

Banking
App

AS/RS

Give access 
to bank 

account?

Bank

Holy Grail
in Backend only

Authorization
Request

Authorization
Response



User

OAuth from 10.000 feet

Authorization Request

Authorization Request

User authenticates; authorizes access

Authorization Response

Authorization Response

ClientStart

Banking
App Bank

Authorization
Request

Authorization
Response

Resource Access

Authorization Server

Resource Server(s)



Security Challenges for classic OAuth



Challenge 1: Implementation Flaws

● We still see many implementation flaws
● Known anti-patterns are still used

○ Insufficient redirect URI checking (code/token is redirected to attacker)
○ state parameter is not used properly to defend against CSRF
○ … 

● Clients worse than authorization/resource servers

● [Li et al., 2014]
60 chinese clients, more than half vulnerable to 
CSRF

● [Yang et al., 2016]
Out of 405 clients, 55% do not handle state (CSRF 
protection) correctly

● [Shebab et al., 2015]
25% of OAuth clients in Alexa Top 10000 vulnerable 
to CSRF

● [Chen et al., 2014]
89 of 149 mobile clients vulnerable to one or more 
attacks

● [Wang et al., 2013]
Vulnerabilities in Facebook PHP SDK and other 
OAuth SDKs

● [Sun et al., 2012]
96 Clients, almost all vulnerable to one or more 
attacks



New use cases require a very high level of security

● Open Banking: Account access, payments, wire transfers

● eHealth: Access to health data

● eSigning: Legally binding digital signatures

● Wallets (EU Digital Identity Wallets, eIDAS 2.0): 

Identification on Level of Assurance High

Far beyond the scope of the original security threat model!

Challenge 2: High-Stakes Environments



Challenge 3: Large-scale Open Ecosystems

Originally anticipated:

One trustworthy OAuth provider,
statically configured per client

Client

Resource ServerResource Server Authorization ServerResource Server

OAuth Provider



Challenge 3: Large-scale Open Ecosystems

Recent examples:

● Payment Services Directive 2
○ Open banking interface required for european banks
○ > 5000 banks in europe
○ Similar initiatives all over the world
○ One client - thousands of potential OAuth providers

● MCP - Model Context Protocol 
○ Open protocol to connect AI models to different data sources and tools
○ Dozens of servers publicly available



OAuth Provider B

Challenge 3: Large-scale Open Ecosystems

Client
Resource ServerResource Server

Authorization Server

Resource Server

Resource Server

OAuth Provider C

Resource Server Authorization ServerResource Server

OAuth Provider A

Resource ServerResource Server

Authorization Server

Resource Server

Dynamic relationships

Multiple AS/RS per client

Today:

Not all entities 
are trustworthy!



OAuth Provider B

Challenge 3: Large-scale Open Ecosystems

Client
Resource ServerResource Server

Authorization Server

Resource Server

Resource Server

OAuth Provider C

Resource Server Authorization ServerResource Server

OAuth Provider A

Resource ServerResource Server

Authorization Server

Resource Server

Dynamic relationships

Multiple AS/RS per client

Today:

Not all entities 
are trustworthy!

AS M
ix-

Up A
tta

ck
! 



How to address these
challenges?



Securing Your Grandfather’s OAuth

● RFC9700: Best Current Practice for OAuth 2.0 Security
● OAuth 2.1
● FAPI 2.0



RFC9700: Best Current Practice for OAuth 2.0 Security

~10 years of collected OAuth security knowledge

● Refined and enhanced security guidance for OAuth 2.0 implementers
● Complements existing security guidance in RFCs 6749, 6750, and 6819

● Updated, more comprehensive Threat Model
● Description of Attacks and Mitigations
● Simple and actionable recommendations

Input from practice and formal analysis



OAuth 2.1

Updated version of OAuth 2.0

Includes all mitigations required by the Security BCP document

Removes less secure options and flows



OpenID FAPI

Security, interoperability, and feature profile for OAuth 2.0

Implements all the security recommendations from the OAuth Security BCP

Usable for all APIs, including high-security applications.

FAPI 2.0: Latest version



FAPI?

Financial API



FAPI?

Financial API

Financial API Security Profile



FAPI?

Financial API

Financial API Security Profile

Financial-grade API Security Profile



FAPI?

Financial API

Financial API Security Profile

Financial-grade API Security Profile

FAPI



OpenID Connect

OAuth 2.0OAuth 2.1
= OAuth 2.0

 + Security BCP

OpenID FAPI 2.0
Interop. + Security 

Profile of OAuth 2.0
Interoperability Authentication

Conformance
Tests

AuthorizationSecurity/ 
Hardening



And then

The Wallets Came Along



What the heck are Identity Wallets?

- Paradigm shift: 
- From server-based to user-centric identities

- From identity providers to credential providers

- Not technically new — but now gaining traction world-wide

- EUDI Wallet:
- To be provided until Christmas 2026

- By all member-states

- EU-wide interoperability

- Official documents and other attestations (membership cards, tickets, etc.)

- US: Mobile Drivers License Disclaimer:
not related to crypto wallets

not blockchain-based



Identity Wallets

Issuers Relying PartiesRelying Parties

Wallet
IssuersIssuers Verifiers

User

Credentials Presentations

Holder



Identity Wallets

Issuers Relying PartiesRelying Parties

Wallet
IssuersIssuers Verifiers

User

Credentials Presentations

Holder

SD-JWT
given_name = Daniel
family_name = Fett
birthdate = 1970-01-01
cnf key = RoaXNJc0FLZXk…

✓ signed 
by Issuer

SD-JWT
given_name = Daniel
family_name = Fett
birthdate = 1970-01-01
cnf key = RoaXNJc0FLZXk…

✓ signed 
by Issuer

Key Binding JWT
aud = Verifier.com
nonce = 42422323

✓ signed 
by Holder



Under the Hood



Presentation
Protocols

Issuance
Protocols

Wallet Ecosystems

Issuers Relying PartiesRelying Parties

Wallet
IssuersIssuers Verifiers

User

Credentials Presentations

Holder



Credential
Formats

Presentation
Protocols

Issuance
Protocols

Wallet Ecosystems

Issuers Relying PartiesRelying Parties

Wallet
IssuersIssuers Verifiers

User

Credentials Presentations

Holder



Trust Frameworks

Credential
Formats

Presentation
Protocols

Issuance
Protocols

Wallet Ecosystems

Issuers Relying PartiesRelying Parties

Wallet
IssuersIssuers Verifiers

User

Credentials Presentations

Holder



OpenID for 
Verifiable 

Presentations

OpenID for
Verifiable Credential 

Issuance

Protocols for Wallet Ecosystems

Issuers Relying PartiesRelying Parties

Wallet
IssuersIssuers VerifiersCredentials Presentations

OpenID for Verifiable Credentials (OpenID4VC)





OpenID for 
Verifiable 

Presentations

OpenID for
Verifiable Credential 

Issuance

Protocols for Wallet Ecosystems

Issuers Relying PartiesRelying Parties

Wallet
IssuersIssuers VerifiersCredentials Presentations

OpenID for Verifiable Credential Issuance

● Wallet acts as OAuth Client
● Issuer acts as Authorization Server
● Similar to OpenID Connect

OpenID for Verifiable Presentations

● Verifier acts as OAuth Client (Relying Party)
● Wallet acts as Authorization Server 
● Mostly classic OAuth



OAuth 

OAuth Provider(s)
(Authorization Server/Resource Server)

User Client

Photo
Editor Google

Photos
authorizes to access

OpenID Connect 

Relying PartyUser

authenticates to using identity from

Identity Provider(s)

OpenID for Verifiable Presentations

Verifier/
Relying Party

User

presents to a credential from

Wallet(s)

Bank



Security Challenges for Wallet Ecosystems

● Key storage on mobile devices
● Cross-device flows
● Lack of secure biometric methods
● Complex EU-scale trust framework
● New protocols and standards

(also various privacy topics — let’s discuss if you’re interested)



What could possibly go wrong?

● Insufficient identification of the Verifier
● Identification process taken out of context
● User data can be forged
● Credentials could be forwarded to third parties
● …

Phishing



Call to Action

Implementers, Security Experts, Pentesters, Red Teamers:

● Expect a new tool for identification — the Wallet
● Make yourself familiar with the specifications and get involved
● Expect old & new vulnerabilities and prepare accordingly
● Use provided tooling (conformance tests) and resources (security 

considerations)



Thank you!

Dr. Daniel Fett
SPRIN-D
daniel.fett@eudi.sprind.org

Linkedin:



Requested Links

(added after the talk)

EUDI Wallet Project Website (not super interesting yet): 
https://bmi.usercontent.opencode.de/eudi-wallet/eidas2/start/ 

Blueprint for the ecosystem (architecture etc.): 
https://bmi.usercontent.opencode.de/eudi-wallet/eidas-2.0-architekturkonzept/ 

Wallet architecture details: 
https://bmi.usercontent.opencode.de/eudi-wallet/wallet-development-documentation-public/ 

SPRIND job postings: https://sprind.org/wir/jobs 

https://bmi.usercontent.opencode.de/eudi-wallet/eidas2/start/
https://bmi.usercontent.opencode.de/eudi-wallet/eidas-2.0-architekturkonzept/
https://bmi.usercontent.opencode.de/eudi-wallet/wallet-development-documentation-public/
https://sprind.org/wir/jobs

