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In this Talk

What is OAuth 2.0? Quick recap!

Security Challenges for “classic” OAuth & how to address them

The future of identity ecosystems and new threats



Who is familiar with OAuth?
OAuth 2.0



OAuth is a standard
for federated authorization
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OAuth 2.0!

e-health
open banking

open insurance

open consumer data

digital identity ecosystems

e-signing

e-governmentopen finance
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Security Challenges for classic OAuth



Challenge 1: Implementation Flaws

● We still see many implementation flaws
● Known anti-patterns are still used

○ Insufficient redirect URI checking (code/token is redirected to attacker)
○ state parameter is not used properly to defend against CSRF
○ … 

● Clients worse than authorization/resource servers

● [Li et al., 2014]
60 chinese clients, more than half vulnerable to 
CSRF

● [Yang et al., 2016]
Out of 405 clients, 55% do not handle state (CSRF 
protection) correctly

● [Shebab et al., 2015]
25% of OAuth clients in Alexa Top 10000 vulnerable 
to CSRF

● [Chen et al., 2014]
89 of 149 mobile clients vulnerable to one or more 
attacks

● [Wang et al., 2013]
Vulnerabilities in Facebook PHP SDK and other 
OAuth SDKs

● [Sun et al., 2012]
96 Clients, almost all vulnerable to one or more 
attacks



New use cases require a very high level of security

● Open Banking: Account access, payments, wire transfers

● eHealth: Access to health data

● eSigning: Legally binding digital signatures

● Wallets (EU Digital Identity Wallets, eIDAS 2.0): 

Identification on Level of Assurance High

Far beyond the scope of the original security threat model!

Challenge 2: High-Stakes Environments



Challenge 3: Large-scale Open Ecosystems

Originally anticipated:
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Challenge 3: Large-scale Open Ecosystems

Recent examples:

● Payment Services Directive 2
○ Open banking interface required for european banks
○ > 5000 banks in europe
○ Similar initiatives all over the world
○ One client - thousands of potential OAuth providers

● MCP - Model Context Protocol 
○ Open protocol to connect AI models to different data sources and tools
○ Dozens of servers publicly available
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How to address these
challenges?



Securing Your Grandfather’s OAuth

● RFC9700: Best Current Practice for OAuth 2.0 Security
● OAuth 2.1
● FAPI 2.0



RFC9700: Best Current Practice for OAuth 2.0 Security

~10 years of collected OAuth security knowledge

● Refined and enhanced security guidance for OAuth 2.0 implementers
● Complements existing security guidance in RFCs 6749, 6750, and 6819

● Updated, more comprehensive Threat Model
● Description of Attacks and Mitigations
● Simple and actionable recommendations

Input from practice and formal analysis



OAuth 2.1

Updated version of OAuth 2.0

Includes all mitigations required by the Security BCP document

Removes less secure options and flows



OpenID FAPI

Security, interoperability, and feature profile for OAuth 2.0

Implements all the security recommendations from the OAuth Security BCP

Usable for all APIs, including high-security applications.

FAPI 2.0: Latest version



FAPI?

Financial API



FAPI?

Financial API

Financial API Security Profile



FAPI?

Financial API

Financial API Security Profile

Financial-grade API Security Profile



FAPI?

Financial API

Financial API Security Profile

Financial-grade API Security Profile

FAPI



OpenID Connect

OAuth 2.0OAuth 2.1
= OAuth 2.0

 + Security BCP
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And then

The Wallets Came Along



What the heck are Identity Wallets?

- Paradigm shift: 
- From server-based to user-centric identities

- From identity providers to credential providers

- Not technically new — but now gaining traction world-wide

- EUDI Wallet:
- To be provided until Christmas 2026

- By all member-states

- EU-wide interoperability

- Official documents and other attestations (membership cards, tickets, etc.)

- US: Mobile Drivers License Disclaimer:
not related to crypto wallets

not blockchain-based
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Identity Wallets
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SD-JWT
given_name = Daniel
family_name = Fett
birthdate = 1970-01-01
cnf key = RoaXNJc0FLZXk…

✓ signed 
by Issuer

SD-JWT
given_name = Daniel
family_name = Fett
birthdate = 1970-01-01
cnf key = RoaXNJc0FLZXk…

✓ signed 
by Issuer

Key Binding JWT
aud = Verifier.com
nonce = 42422323

✓ signed 
by Holder



Under the Hood
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Trust Frameworks
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OpenID for 
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Presentations
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OpenID for Verifiable Credential Issuance

● Wallet acts as OAuth Client
● Issuer acts as Authorization Server
● Similar to OpenID Connect

OpenID for Verifiable Presentations

● Verifier acts as OAuth Client (Relying Party)
● Wallet acts as Authorization Server 
● Mostly classic OAuth
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Security Challenges for Wallet Ecosystems

● Key storage on mobile devices
● Cross-device flows
● Lack of secure biometric methods
● Complex EU-scale trust framework
● New protocols and standards

(also various privacy topics — let’s discuss if you’re interested)



What could possibly go wrong?

● Insufficient identification of the Verifier
● Identification process taken out of context
● User data can be forged
● Credentials could be forwarded to third parties
● …

Phishing



Call to Action

Implementers, Security Experts, Pentesters, Red Teamers:

● Expect a new tool for identification — the Wallet
● Make yourself familiar with the specifications and get involved
● Expect old & new vulnerabilities and prepare accordingly
● Use provided tooling (conformance tests) and resources (security 

considerations)



Thank you!

Dr. Daniel Fett
SPRIN-D
daniel.fett@eudi.sprind.org

Linkedin:



Requested Links

(added after the talk)

EUDI Wallet Project Website (not super interesting yet): 
https://bmi.usercontent.opencode.de/eudi-wallet/eidas2/start/ 

Blueprint for the ecosystem (architecture etc.): 
https://bmi.usercontent.opencode.de/eudi-wallet/eidas-2.0-architekturkonzept/ 

Wallet architecture details: 
https://bmi.usercontent.opencode.de/eudi-wallet/wallet-development-documentation-public/ 

SPRIND job postings: https://sprind.org/wir/jobs 

https://bmi.usercontent.opencode.de/eudi-wallet/eidas2/start/
https://bmi.usercontent.opencode.de/eudi-wallet/eidas-2.0-architekturkonzept/
https://bmi.usercontent.opencode.de/eudi-wallet/wallet-development-documentation-public/
https://sprind.org/wir/jobs

